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NUMERICAL SOLUTION OF THE PROBLEM OF THE EFFECT

OF A SHOCK PULSE ON AN ICE SHEET

UDC 532.526.2V. D. Zhestkaya and V. M. Kozin

A mathematical formulation of the problem is given. A method is proposed to determine the initial
velocities of points of an ice sheet subjected to a point shock pulse. An example of calculation of
ice-sheet deflections is considered.

Key words: ice sheet, pulse, numerical modeling.

Investigation of the stress–strain state of an ice sheet subjected to loads of various type makes it possible to
solve a number of applied problems arising in navigation on frozen waterways, in operation of engineering facilities
in river and offshore areas, and in implementing flood prevention measures during ice drift and freezing periods. In
particular, it is of interest to study the behavior of an ice sheet subjected to pulse loading. This problem arises in
blasting ice dams and jams and in ice-breaking operations.

At present, analytical solutions of this problem [1, 2] have been found only for relatively simple ice conditions.
For problems modeling real ice conditions (arbitrary shorelines, variable water body depth, etc.), the construction
of analytical solutions involves great mathematical difficulties, and using numerical methods is therefore more
promising.

In the present work, a numerical method combining the finite-element method and the finite-difference
method is used to calculate ice-sheet deflections under the action of a point shock pulse, i.e., a suddenly applied
force P for a time interval Δτ which is smaller than the period of natural vibrations. According to [1], the ice sheet
is represented as a plate and water is considered an ideal incompressible liquid. The water depth is assumed to be
constant.

In constructing the mathematical model, we use rectangular coordinates with the x and y axes located in
the plane of the ice plate and the z axis directed upward (Fig. 1).

As the basic relations we adopt the differential equation of viscoelastic vibrations of the ice sheet [1]
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the Laplace equation for the liquid velocity potential
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∂w

∂t
− ∂Φ
∂z

∣∣∣
z=0

= 0. (4)

Komsomol’sk-on-Amur State Technical University, Komsomol’sk-on-Amur, 681013; kks@knastu.ru. Trans-
lated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 2, pp. 152–159, March–April, 2008. Original
article submitted August 1, 2006; revision submitted April 12, 2007.

0021-8944/08/4902-0285 c© 2008 Springer Science +Business Media, Inc. 285



xO

y
h

H

z

Fig. 1. Diagram of the problem.

Here w is the ice deflection, ρw and ρi are the densities of water and ice, respectively, g is the acceleration due to
gravity, h is the thickness of the ice sheet, Φ is the velocity potential, p is the intensity of the external load, H is
the basin depth, τf is the strain relaxation time, and D is the flexural rigidity of the plate. In this case,

p(x, y, t) = Uδ(x, y)δ(t),

where U is the shock pulse and δ(x, y) and δ(t) are the Dirac delta functions.
The solution algorithm is similar to that used in [3, 4] for an ice sheet subjected to a moving load. The

numerical solution given in [3, 4] is based on two numerical methods: the finite-element method and the finite-
difference method.

The calculation is performed for a relatively large region of liquid with an ice cover which is bounded in the
horizontal plane. The area of this region should be sufficient to assume no plate displacements on its boundary Γ
and to adopt the fixed-end conditions
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where n is the normal to the boundary Γ.
On the vertical surface which bounds the liquid under the ice cover, we impose the nonpenetration condi-

tion [4]
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where n is the normal perpendicular to the z axis.
Using the method of expanding the displacements in the principal modes, which is known in the theory of

small vibrations, we write the expressions for w and Φ in the form

w =
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wm, Φ =
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Φm,

where the functions under the summation sign are linearly independent. Keeping n terms of the series and decom-
posing the function Φm into two factors, we obtain

w =
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wm; (7)
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ϕm(x, y, t)ψm(z) =
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ϕm(x, y, t) cosh (km(z +H)). (8)

Here km = const; the expression for ψm(z) was obtained by substituting the relation Φm = ϕm(x, y, t)ψm(z) into
(2), dividing the variables and solving the differential equation with the variable z [4].

It should be noted that, if only n terms of the series are kept, the initial system, which has an infinite number
of degrees of freedom, is replaced by a system with a finite number of degrees of freedom n.

With the substitution of (7) and (8) into (1)–(4), Eq. (3) is satisfied. Eliminating ϕm from Eqs. (1), (2),
and (4), we obtain the system
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From (5), we obtain
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As shown in [4], if conditions (10) are satisfied on the boundary of the region considered, condition (6) is also
satisfied. Thus, we eliminated the potential Φ from the problem and obtained Eqs. (9) and (10) for the function
wm in (7).

Using the finite-element algorithm, we construct a discrete model for the ice plate by setting

wm(x, y, t) =
n∑

i=1

Ni(x, y)qim(t). (11)

Here Ni(x, y) are shape functions, qim(t) are the components of the nodal displacement vector [q]m(t), and n is the
number of nodal displacements and the number of degrees of freedom of the discrete model since, at any point of
the discrete model, the displacements are completely determined by the set of nodal displacements. The value of
n, which is determined using conditions (10), depends on the type and number of the finite elements constituting
the discrete model of the plate.

In view of (11), the expression for the plate deflection becomes
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qim(t) are the components of the total nodal-displacement vector [q](t):
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The resolving system of equations of the problem is obtained by employing the generalized Bubnov–Galerkin
method. As a result, we obtain the system of matrix equations [3, 4]
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where [P ](t) is the vector of the external nodal loads. The elements of the matrices [M ]m, [C], [K], [S], and [T ] in
(13) depend on ρw, ρi, h, H , τf , D, km, and Ni(x, y).

System (13) is solved using the finite-difference method [3, 4]. After transformations, we obtain the matrix
equations
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(
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(14)

where Δt is the grid step, [q]m,r is the value of the vector [q]m at the rth node, and [P ]r is the value of the nodal
loads vector at t = rΔt; the matrix coefficients [A]m, [B]m, and [D]m depend on the parameters of the problem.

The second equation of system (14) can be satisfied by representing the expression for [q]m,r in the form

[q]m,r = [X ]mαm,r. (15)

Here [X ]m is the eigenvector of the homogeneous system of linear equations with the matrix [S] − k2
m[T ] which

correspond to the eigenvalue k2
m, and αm,r is the unknown coefficient. The eigenvectors [X ]m and the eigenvalues

k2
m are calculated in the first stage of the calculation using any suitable method (for example, the rotation method).
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Substitution of (15) into the first equation of system (14) yields
n∑

m=1

(
[A]m[X ]mαm,r+1 + [B]m[X ]mαm,r + [D]m[X ]mαm,r−1

)
= (Δt)2[P ]r,

r = 0, 1, 2, . . . , L.
(16)

Equation (16) should be supplemented by initial conditions. Let, at the initial time t = 0, the nodal
displacement vector [q] be equal to [f0], and the rate of its change be equal to [ḟ0]:

[q](0) = [f0],
(d[q]
dt

)∣∣∣
t=0

= [ḟ0]. (17)

In view of the finite-difference representation of the derivatives, Eqs. (12), (15), and (17) lead to the system
of equations
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From Eqs. (18), we obtain αm,0 and αm = αm,−1 − αm,1. Substituting αm,0 and αm into (16), we obtain the final
system of equations for αm,r (r = 1, 2, . . . , L− 1):

n∑
m=1

(
[D]m + [A]m

)
[X ]mαm,1 = (Δt)2[P ](0) −

n∑
m=1

[B]m[X ]mαm,0 −
n∑

m=1

[D]m[X ]mαm,

n∑
m=1

[A]m[X ]mαm,r+1 = (Δt)2[P ](rΔt) −
n∑

m=1

[B]m[X ]mαm,r −
n∑

m=1

[D]m[X ]mαm,r−1.

Knowing αm,r, we find the nodal displacements and the plate deflection at node of the time grid.
If the single load on the ice sheet is the shock pulsed load at t = 0, in the above relations, one should set

[P ] = 0 and [f0] = 0. The factor initiating the motion of system is the initial velocity [ḟ0] imparted to the ice plate
at the time of action of the pulse.

The initial velocities of points of the plate can be determined from the law of conservation of momentum,
according to which K = U (K is the momentum acquired by the plate as a result of impact and U = PΔτ is the
impact impulse).

To solve the problem in question, we employ the finite-element method. The plate deflection is approximated
by the expression

w(x, y) =
n∑

i=1

qiNi(x, y),

where qi are the nodal displacements, Ni are shape functions, and n is the number of nodal displacements.
In determining the initial velocities, it is necessary to specify their dependences on the coordinates x and

y of points of the plate. We assume that the velocities are proportional to the plate deflections under the static
action of the point force P at the point of application of the pulse. Then, the velocity distribution over the plate
can be represented as

v(x, y) = vP
w(x, y)
w(xP , yP )

, (19)

where vP is the velocity of the plate at the point of impact, w(x, y) is the static deflection of the plate under the
action of the force P , w(xP , yP ) is the static deflection of the plate at the point of application of the force P , and
xP and yP are the coordinates of the point of application of the force P . We note that in determining the static
deflection, we can set P = 1 since the ratio w(x, y)/w(xP , yP ) does not depend on the value of P .

The momentum of the plate can be calculated by the formula

K =
∫ ∫

S

ρihv(x, y) dx dy =
ρihvP

w(xP , yP )

∫ ∫

S

w(x, y) dx dy,
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where ρi is the density of ice; the integral is taken over the area of the plate S. Denoting the number of finite
elements by m, from this formula we obtain

K =
ρihvP

w(xP , yP )

m∑
i=1

∫ ∫

Si

wi(x, y) dx dy, (20)

where wi(x, y) is the deflection of the ith finite element and Si is the are of the ith finite element.
If the number of nodal displacements of the finite element equals ni, then
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ni∑
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q
(i)
k N

(i)
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where q(i)k are the nodal displacements of the ith finite element and N (i)
k are shape functions.

Substitution of (21) into (20) yields
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Introducing the notation A(i)
k =

∫ ∫
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k dx dy and taking into account that K = U , we have the following equality
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Having found vP , from formula (19), we determine the linear velocities of points of the plate, in particular, the
velocities of the nodes of the finite-element grid. Thus, we obtain the vector [ḟ0] included in the initial conditions
of the problem.

In [3, 4], a method was proposed to calculate the stress–strain state of an ice sheet under the action of a
moving load. A comparison of the solutions obtained using this method with available analytical solutions and
experimental data obtained in both laboratory and full-scale experiments shows that the numerical solutions are
fairly exact [4]. In the present paper, the indicated method is proposed for use in solving the problem of the effect
exerted on an ice sheet by a load of a different type, namely, a shock pulse. Because, as noted above, the algorithm
for solving this problem is similar to the algorithm for solving the problem of motion of a load on an ice sheet, the
latter problem can be regarded as a test for the problem of pulsed load. Reliable results obtained in the case of
moving loads suggest that the results obtained for the case of pulsed loads are reliable.

Below, we give results of calculation of plate deflections (obtained in experimental modeling of the response
of an ice sheet to pulsed loading) using the method described above. The ice sheet was modeled by a rubber film
1 mm thick which had the shape of a rectangular plate of length L = 2 m and width B = 1.2 m. The basin depth
was 0.02 m. The physical parameters of the problem had the following values: ρw = 1000 kg/m3, ρi = 2500 kg/m3,
τf = 10 sec, and D = 0.14 · 10−4 nm. The value of the pulse was set equal to 0.98 · 10−4 N · sec, the point of its
application was at the center of the plate, and the action of the pulse was directed upward. The time grid step was
equal to 0.0625 sec.

The plate was discretized into square finite elements with sides 0.2 m long. The x axis coincided with the
symmetry axis of the plate and was parallel to its long edge, and the coordinate origin was on the left edge of the
plate. In the calculation, we took into account the symmetry of the plate and considered only its part on one side
from the x axis.

The discrete model was constructed using the so-called combined bending rectangular finite element, which
had 16 degrees of freedom [5]. At each node of the grid of elements, there were generally four nodal displacements,
and at the node lying on the symmetry axis, two nodal displacements. Thus, in this case, in view of the boundary
conditions and the symmetry conditions, the total number of nodal displacements was n = 90.

Figure 2 shows curves of plate deflections on the x axis at various times from the moment of application of
the pulse. The method described above can also be used in the case of several pulses (simultaneously or with a
shift in time). We also note that the numerical method chosen for the solution of the problem allows one to take
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Fig. 2. Ice sheet deflections: (a) t = 0.0625; (b) t = 0.1875 (1) and 0.25 sec (2); (c) t = 0.375 sec (1)
and 0.5 sec (2); (d) t = 0.6875 (1) and 1.875 sec (2).

into account various features of ice conditions (for example, the basin outline in plan, the presence of cracks, sites
of free water, etc.) that are difficult to take into account in the analytical solution of the problem.

This work was supported by the analytical departmental target program “Development of the Scientific
Potential of the Higher School (2006–2008)” (Grant No. RNP.2.1.2.1809).
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